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Abstract
We discuss the structure of shock singularities of the Burgers–Hopf hierarchy.
It is shown that the set of singular solutions defines a stratification of the affine
space of the flow parameters in the hierarchy. The stratification is associated
with the Birkhoff decomposition of the Grassmannian given by the set of linear
spaces spanned by the hierarchy. We then construct integrable hierarchy on
each stratum and demonstrate that it describes a deformation of a hyperelliptic
curve parametrizing the stratum. The hierarchy is called the hidden Burgers–
Hopf hierarchy, and we found the Riemann invariant form and the hodograph
solution.

PACS numbers: 02.30.Ik, 02.40.Re, 02.30.Jr, 02.40.Vh
Mathematics Subject Classification: 37K10, 58F07, 35Q53, 14H20

1. Introduction: singular solutions of the BH hierarchy

The Burgers–Hopf (BH) hierarchy defined by
∂u

∂tn
= cnu

n ∂u

∂x
with cn = (−1)n

(2n + 1)!!

2nn!
n = 0, 1, 2, . . .

plays an important role in the study of a wide range of phenomena in physics from
hydrodynamics to topological field theory (for examples, see [7, 8, 23]). It is clear that
the BH hierarchy can be obtained by the dispersionless limit of the KdV hierarchy as well as
the dissipationless limit of the Burgers hierarchy. However, the present study does not require
any information of the original hierarchy.

Using the method of characteristic, the solution of the hierarchy can be expressed by the
hodograph form with t0 ≡ x,

�(u, x, t1, t2, . . .) := x +
∞∑
j=1

cju
j tj − f (u) = 0 (1.1)

0305-4470/02/310489+12$30.00 © 2002 IOP Publishing Ltd Printed in the UK L489

http://stacks.iop.org/ja/35/L489


L490 Letter to the Editor

where f (u)may be determined by the initial data, e.g. u(x, 0, 0, . . .) = f −1(x) for monotone
data. Then the BH hierarchy gives a deformation of the data x = f (u) in each tj -direction,
and this defines an infinite-dimensional surface given by (1.1).

Here we are interested in the class of solutions of the BH hierarchy with singularity of
shock wave type. The singularity of this type corresponds to a point on the surface where the
derivative ∂u/∂x blows up at this point, that is, equation (1.1) is not invertible for u. This
condition is equivalent to �′ := ∂�/∂u = 0 at the point, which implies that the solution u
can be expressed as a function of (t1, t2, . . .). Thus the conditions � = 0 and �′ = 0 define
a singular sector of codimension �1 in C

∞. The affine space C
∞ is then stratified with those

singular sectors as follows. Let us first define the solution sets,

Un := {u | �(j) = 0 (0 � j � n),�(n+1) �= 0}
where�(i) = ∂i�/∂ui . Then the singular sector of codimension m can be defined as

Zm :=
{
(t0, t1, t2, . . .) ∈ C

∞ ∣∣u ∈ Uj such that m =
∞∑
j=1

j |Uj |
}
. (1.2)

where |Uj | is the number of solutions in Uj . For example, Z0 consists of the points where
�(u) = 0 has only simple roots, and the points in Z1 correspond to the case where�(u) = 0
and �′(u) = 0 has only one common root and no roots for �(j)(u) = 0, j � 2. The closure
of the set of those singular sectors then forms a decomposition of the affine space C

∞, i.e.

C
∞ =

⋃
m�0

Zm disjoint union.

In order to show some explicit structure of the set Zm, let us consider the case where f (u) is
given by an (N + 1)th degree of polynomial in u. Then on an (N + 1)-dimensional subspace
of C

∞ with tn = 0 for n � N + 1, equation (1.1) can be written as

�N+1(u, x, t1, . . . , tN ) = x +
N∑
j=1

cju
j tj = uN+1 +

N∑
j=0

bju
j . (1.3)

Since all the coefficients bj on the right-hand side can be absorbed by shifting the times,
(x − b0, t1 − (b1/c1), t2 − (b2/c2), . . .), we just set all bj = 0. Then we consider the singular
sectors, denoted as ZN+1

m , on the subspace C
N+1. Equation (1.3) is well known as a universal

unfolding of a singularity of AN -type [5]. The singularity of this type includes cusp, swallow
tail and butterfly for N = 2, 3 and 4. As an example, we just consider the case with N = 2.

Example 1.1. The hodograph solution (1.3) with N = 2 is given by

�3(u, x, t1, t2) = x − 3
2ut1 + 15

8 u
2t2 − u3 = 0.

Then the singular sector Z3
1 is given by

Z3
1 = Z3+

1 ∪ Z3−
1 with Z3±

1 = {(x, t1, t2) | �3(u
±, x, t1, t2) = 0, u+ �= u−}

where u± are the roots of �′
3 = 0, i.e.

u± = 1
8

(
5t2 ± √

25t22 − 32t1

)
.

The setsZ3±
1 obviously intersect on the double points of u+ = u−, and form a cusp singularity.

The intersection provides the higher singular sector Z3
2 which is given by a twisted cubic

curve:

Z3
2 = {

(x, t1, t2) | x = u3, t1 = 2u2, t2 = (
8
5

)
u
}
.

The real sections of those sectors will be an interesting object to study.
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Remark 1.2. A stratification of a certain (compact) manifold is an interesting problem of
algebraic geometry, and has several intimate connections with the study of integrable systems.
For example, the isospectral manifolds of the periodic Toda lattices are given by Jacobian
varieties which have the stratification based on the theta divisor [1, 2, 15]. Also in the case
of finite nonperiodic Toda lattices, the isospectral manifolds are compactified in the flag
manifolds, and are decomposed into the Bruhat cells which correspond to the sets of singular
solutions [6, 11]. (See also [22] for several examples of the stratifications of Jacobian varieties
related to finite-dimensional Hamiltonian systems.) The present study will provide an example
of the stratification related to integrable systems of hydrodynamic type.

In this letter, we construct an integrable hierarchy defined on each singular sector Zm.
These hierarchies can also be obtained by the dispersionless limits of the hidden hierarchies
of the KdV equation considered in [19]. We call them the hidden BH hierarchies, and we
construct them as a regularization of the shock singularity of the BH hierarchy. Each hierarchy
on Zm is called the BHm hierarchy. In section 2, we discuss the Grassmannian structure of
the singular sectors and show the connection to hyperelliptic curves. Then in section 3, we
define the BHm hierarchy on Zm as a deformation of a hyperelliptic curve of genus m. We
also show that the hierarchy can be put into the Riemann invariant form, and then construct
the hodograph solution. The Riemann invariant form has also been obtained in a different
approach in [9]. In section 4, we give a brief discussion on several extensions of the present
construction of the hidden dispersionless hierarchies. We also mention some related topics
such as a topological field theory [4] and a possible stratification of the Frobenius manifold as
obtained by those hidden hierarchies [14].

2. Grassmannian structure of the BH hierarchy

In this section, we discuss the Grassmannian structure of the solutions of the BH hierarchy.
Let us first recall (see for example [13]) that the BH hierarchy can be formulated as

∂p

∂tj
= ∂

∂x
Qj with Qj = (λ2j+1)+p j = 0, 1, 2, . . . (2.1)

where (λn)+p indicates the polynomial part of λn in p having the algebraic relation

p2 = λ2 + u. (2.2)

The hierarchy (2.1) can be considered as a deformation of the curve (2.2) which corresponds
to the Riemann surface of genus 0 (sphere) with the compactification.

Later we will use k = λ2, and then we assign the degrees as

Deg(k) = 2 Deg(p) = 1.

One introduces a function S(x, t1, t2, . . .) which plays an important role in the theory of
dispersionless hierarchy. The S function is defined by rewriting (2.1) in the form

∂S

∂tj
= Qj for j = 0, 1, 2, . . . . (2.3)

Since Qj = (λ2j+1)+p is a polynomial of degree 2j + 1 in p and p2 = k + u, k = λ2, the S
function can be expressed by a Laurent series in C[[k, k−1]] · √

k,

S(t0, t1, t2, . . .) =
∞∑
i=0

ki+
1
2 ti +

∞∑
j=0

1

kj+ 1
2

Fj (t0, t1, t2, . . .).
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To characterize the solution space of the BH hierarchy, we now define a linear space
spanned by the flows (2.3) in a manner similar to the case of the KP hierarchy [3],

W0 := SpanC

{
St0 , St1 , St2 , . . .

}
= SpanC{Q0,Q1,Q2, . . .}.

Since Qi is a polynomial in p and p2 = k + u, one can also consider Qi to be an element in
C[k] · p. This observation will be crucial for defining an integrable hierarchy on the singular
sector. Thus we have

W0 = SpanC{p, kp, k2p, . . .} ∼= C[k] · p.
This implies the inclusion

kW0 ⊂ W0

which is the condition for the KdV reduction in terms of the KP hierarchy [21].
One should however note that the linear spaceW0 cannot be defined on the singular sectors

where the flows (2.1) blow up and the commutativity among the S flows is not defined. Recall
that the conditions on the hodograph solution � = 0 provide a constraint on the coordinates.
For example, the first condition�′ = 0 gives

c1t1 +
∞∑
j=2

jcju
j−1tj = f ′(u)

which implies that u can be determined as a function of tj for j � 1. Then with � = 0, the
coordinate x can be considered as a function of the other times. Hence one can expect to have
a map ψm : C

∞ −→ Zm so that

ψm(tm, tm+1, tm+2, . . .) = (a0, a1, . . . , am−1, tm, tm+1, . . .)

where ai, 0 � i � m − 1 are some functions of tj , j � m. The map can be defined at least
locally on the sector Zm, and it defines a patch on Zm. The S-function then takes the form

Sm(tm, tm+1, . . .) = km+ 1
2

∞∑
i=0

ki tm+i +
m−1∑
i=0

ai(tm, tm+1, . . .)k
i+ 1

2 +O
(
k− 1

2

)
. (2.4)

The linear space spanned by the flows ∂Sm/∂tj , j � m under this restriction on the times
defines

Wm = SpanC

{
Smtm, S

m
tm+1
, Smtm+2

, . . .
} ∼= kmW0.

Then introducing new variable pm := Smtm , we see Wm as the polynomial ring,

Wm
∼= C[k] · pm as a vector space. (2.5)

The Grassmannian Gr is a set of all linear spaces Wm,m � 0, and it has the Birkhoff
decomposition [21]

Gr =
⋃
m�0

�m

where the Birkhoff stratum �m is the set of all linear spaces of Wm. The structure of
the Grassmannian is then the same as the KdV hierarchy by making the identification with
k = λ2,

Wm
∼={λ−m, λ−m+2, . . . , λm−2, λm, λm+1, . . .}

where λ2Wm ⊂ Wm (i.e. kWm ⊂ Wm) [3]. The BH hierarchy is thus defined on the principal
stratum �0.
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Since the degrees of k and pm are assigned as

Deg(k) = 2 Deg(pm) = 2m + 1

one can consider a plane curve Cm defined by

Cm :=
{
(k, pm) ∈ C

2
∣∣∣p2

m = k2m+1 +
2m∑
i=0

uik
2m−i

}
(2.6)

which defines a hyperelliptic curve of genus m and is a smooth affine variety for the generic
values of ui , the deformation parameters. Then the ringWm = C[k] ·pm can be considered as
a part of the quotient ring C[k, p]/Cm with the curve Cm. One should also note that there is a
natural reduction of the curve,

Cm −→ Cm−1 (pm = kpm−1)

which corresponds to the conditions on the parameters, u2m = u2m−1 = 0. This can be
considered as a dispersionless analogue of the regularization of the singularity in the KP
hierarchy by the Bäcklund transformation [3]. Thus the stratum �m is parametrized by the
curve Cm, and the boundary of the stratum corresponds to a singular curve of degenerate
genus m. The higher order stratum is obtained by the desingularization of the curve by
increasing the genus. The curve Cm can be obtained by the dispersionless limit of the hidden
KdV hierarchy considered in [19] and also by a quasi-classical ∂̄ dressing method introduced
in [18]. In the next section, we will consider a deformation of the curve by defining a system
of equations for the parameters ui in Cm where the deformation is parametrized by the times
tj for j � m.

3. The hidden BH hierarchies

We now construct an integrable deformation of the curve Cm in (2.6), which is defined on the
singular sector Zm. First recall the quotient ring of C[k, pm] over an ideal Cm which has a
split,

Rm := C[k, pm]

Cm
= C[k] ⊕ C[k] · pm.

Then a deformation of the curve Cm with an infinite number of deformation parameters is
defined in the same form as (2.3),

∂Sm

∂tj
= Qm

j Qm
j ∈ C[k] · pm j = 0, 1, 2, . . . (3.1)

where Sm is given by (2.4), and Deg
(
Qm
j

) = 2(m + j)+ 1 withQm
0 = pm. With this definition,

the functions ai in Sm can be explicitly written in terms of ui in the curve Cm. Here we have
relabelled the times as tm+i → ti , but we do not think it will cause any confusion. As we
will show below, all the flows in (3.1) are compatible for appropriate form of Qm

j , that is
∂Qm

i

/
∂tj = ∂Qm

j

/
∂ti , and in particular we have for the case i = 0

∂pm

∂tj
= ∂

∂x
Qm
j (3.2)

where we denote x = t0. This provides the system of equations of hydrodynamic type for ui .
Also note that the flows (3.2) are compatible with the automorphism of the curve,pm → −pm.
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Now we show the compatibility of the flows in (3.1). We first note

Lemma 3.1. The Qm
i in (3.1) are given by

Qm
i =

(
km+i+ 1

2

pm

)
+

pm for i = 0, 1, 2, . . .

where (·)+ denotes the projection onto C[k].

Proof. Since ∂pm/∂ti ∼ O
(
km− 1

2
)
, one can set

Qm
i ∼ km+i+ 1

2 +O
(
km− 1

2

)
.

This implies

Qm
i

pm
∼ km+i+ 1

2

pm
+O(k−1).

The statement of the lemma then follows fromQm
i

/
pm ∈ C[k]. �

This formula is a non-zero genus extension of the case with m = 0. In fact we have

Corollary 3.1.

Qi =
(
ki+

1
2

)
+p

=
(
ki+

1
2

p

)
+

p with p2 = k + u

where Qi is defined in (2.1) with k = λ2.

Proof. We first note(
ki+

1
2

p

)
+

p = ki+
1
2 −

(
ki+

1
2

p

)
−
p

where (.)− is the non-polynomial part in k. Since Deg(k) = 2 and Deg(p) = 1, we have(
ki+

1
2

p

)
−
p =

((
ki+

1
2

p

)
−
p

)
−p

=
(
ki+

1
2

)
−p
.

This implies the result. �

In order to show the compatibility of the flows (3.1), we note

Lemma 3.2. The flows (3.1) can be put into the Lax form,

∂k

∂ti
= {
Qm
i , k

}
:= ∂Qm

i

∂pm

∂k

∂x
− ∂Qm

i

∂x

∂k

∂pm
(3.3)

where pm is then considered to be a constant parameter.

Proof. The flows ∂pm/∂ti = ∂Qm
i

/
∂x in (3.1) with x = t0 can be written in terms of the

differential three forms,

dp ∧ dk ∧ dx = dQm
i ∧ dti ∧ dk.

Then assuming k = k(p, x, t), we obtain the result. �

It is standard that the following proposition proves the compatibility of the flows, that is
∂2k/∂ti∂tj = ∂2k/∂tj ∂ti :
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Proposition 3.1.

∂Qm
i

∂tj
− ∂Qm

j

∂ti
+
{
Qm
i ,Q

m
j

} = 0. (3.4)

Proof. Note that writingQm
i = β+

i pm with β+
i ∈ C[k], equation (3.4) can be expressed by the

following equation for β+
i ,

∂β+
i

∂tj
− ∂β+

j

∂ti
+
{{
β+
i , β

+
j

}} = 0

where

{{f, g}} := f
∂g

∂x
− g

∂f

∂x
+ pm{f, g}.

This equation can be proved as follows: first note

∂βi

∂tj
= {{

β+
j , βi

}}
for βi = km+i+ 1

2

pm

(
β+
j = (βj )+

)
.

With the decomposition βi = β+
i + β−

i , we have

∂β+
i

∂tj
+
∂β−

i

∂tj
= {{

β+
j , β

+
i

}}
+
{{
β+
j , β

−
i

}}
.

We also have

∂β+
j

∂ti
+
∂β−

j

∂ti
= −{{β−

i , β
+
j

}}− {{
β−
i , β

−
j

}}
where we have used {{βi, βj }} = 0. Combining these two equations and projecting on C[k],
we obtain the compatibility equation for β+

i as well as β−
i . This completes the proof. �

The simplest example of the BHm equations in terms of ui is given by the t1-flow of the
BH1 equation (see remark 3.2 below for the general form),

∂

∂t1


u0

u1

u2


 =


− 3

2u0 1 0
−u1 − 1

2u0 1
−u2 0 − 1

2u0


 ∂

∂x


u0

u1

u2


 .

As a consequence of the Lax form (3.3), we have

Corollary 3.2. The BHm hierarchy (3.3) can be put into the Riemann invariant form,

∂κi

∂tj
= φ

j

i

∂κi

∂x
for i = 0, 1, 2, . . . , 2m (3.5)

where the Riemann invariants κi are the roots of the polynomial associated with the curve Cm,
and φji is given by the

(
∂Qm

j

/
∂pm

)
(k) at k = κi , that is

p2
m =

2m∏
i=0

(k − κi) and φ
j

i = φj(κi) =
(
kj+m+ 1

2

p

)
+

∣∣∣∣∣
k=κi

.

Proof. First note that from the curve p2
m = F(k) we have

2pm = ∂F

∂k
· ∂k
∂pm
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from which ∂k/∂pm = 0 implies pm = 0. Then the evaluation of (3.3) at the roots of p2
m = 0

completes the proof. �

For example, the Riemann invariant form for the first flow of the BHm equation is given
by

∂κi

∂t1
=
(
κi − 1

2
u0

)
∂κi

∂x
i = 0, 1, . . . , 2m

where u0 = −∑2m
i=0 κi . The Riemann invariant form has been obtained in [9]. We here note

that the Riemann invariant form has an obvious reduction with κj = 0 for some j . This
corresponds to the reduction of the genus as mentioned at the end of the previous section.
There is also another reduction with all κ0 = · · · = κ2m which is associated with a degenerate
case of Cm equivalent to p2

m = k2m+1 of genus 0.
With form (3.5), we can construct the hodograph solution of the hierarchy as shown in

[13]. We first remark that the functions φj (k) in (3.5) form a finite ring of dimension 2m + 1,

Fm := C[k]

p2
m

= SpanC{φ0, φ1, . . . , φ2m}. (3.6)

Note here that φj (k) is a monic polynomial of Deg(φj ) = 2j with Deg(k) = 2 and φ0 = 1.
Then one can write the higher φ2m+j for j � 1 in the form

φ2m+j =
2m∑
i=0

µ
j

i (κ)φ
i modp2

m

whereµji (κ) are functions of the roots κi of p2
m = 0. We also note that theµji (κ) are functions

of the symmetric polynomials νi of the roots κj , which are given by νi = (−1)iui−1, i =
1, . . . , 2m + 1 with

ν1 =
2m∑
j=0

κj ν2 =
∑
i<j

κiκj ν3 =
∑
i<j<l

κiκjκl · · · ν2m+1 =
2m∏
i=0

κi.

For example, we have for j = 1

µ1
2m = − 3

2u0 µ1
2m−1 = − 3

2u1 − 3
8u

2
0 µ1

2m−2 = − 3
2u2 − 3

4u0u1 + 1
16u

3
0 . . . .

Then we have

∂κl

∂t2m+j
=

2m∑
i=0

µ
j

i (κ)
∂κl

∂ti
l = 0, 1, . . . , 2m

which implies that all the roots κl are constants along the characteristic curve,

dt0

µ
j

0(κ)
= · · · = dt2m

µ
j

2m(κ)
= dt2m+j

−1
for all j � 1.

The integration of this equation gives

t0i = ti +
∞∑
j=1

µ
j

i (κ)t2m+j i = 0, 1, . . . , 2m (3.7)

where t0i is the initial position of the characteristic at t2m+j = 0, j � 1. As a simplest example
with m = 1, we have an explicit solution from (3.7) by setting t2m+j = (

3
2

)
δj1 and t0i = 0,

u0 = t2 u1 = t1 − 1
4 t

2
2 u2 = x − 1

2 t1t2 + 1
6 t

3
2 .
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Also taking the sum
∑2m

i=0 φ
it0i of (3.7), we obtain

Theorem 3.1. The hodograph solution of the BHm hierarchy is given by

x +
∞∑
i=0

φi(κj )ti = 0 j = 0, 1, . . . , 2m (3.8)

where the times (x, t1, t2, . . .) can be shifted arbitrary.

This formula will be useful in studying the singular structure of the BHm hierarchy as in
the case of the BH hierarchy. We will report a detailed analysis elsewhere.

Remark 3.2. The general form of the BHm hierarchy can be written in the following form
with the polynomial φi(k) for k being replaced by a matrix K,

∂U

∂ti
= φi(K)

∂U

∂x
with U = (u0, u1, . . . , u2m)

T

where K is the (companion) matrix given by

K =




−u0 1 · · · · · · 0
−u1 0 · · · · · · 0
...

...
. . .

. . .
...

−u2m−1 0 · · · · · · 1
−u2m 0 · · · · · · 0


 .

For example, φ1(K) = K − (
1
2

)
u0I with I = (2m + 1)× (2m + 1) identity matrix.

4. Further extensions and discussion

The present construction of the hidden hierarchies can be extended to the case with the
hyperelliptic curve associated with an even degree polynomial,

C̃m :=
{
(k, p) ∈ C

2
∣∣p2 = k2m+2 +

2m+2∑
i=1

vik
2m+2−i

}
.

Here the degree of k is assigned as Deg(k) = 1 so that Deg(p) = m + 1. The hierarchy of
deformations of the curve C̃m can also be obtained as the dispersionless limit of the integrable
hierarchy associated with the energy-dependent Schrödinger potentials considered in [20],
which coincides with the hidden hierarchy for the Jaulent–Miodek hierarchy [12] (see also
[17]). We here call the integrable hierarchy associated with the curve C̃m the dJMm hierarchy.
Most of the results obtained in sections 2 and 3 remain the same for this case. In particular,
the singular sectors Zm for the dJM0 hierarchy are given by the higher order intersections of
two curves given by the hodograph solution for v1 and v2, which are defined as follows: let
the curve C̃0 be given by

p2 = k2 + v1k + v2 = (k − κ1)(k − κ2).

The hodograph solution has the same form as (1.1),

�j := x +
∞∑
i=0

φi(κj )ti = 0 j = 1, 2.
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Then the singular sectors are defined by

Zm =

(t0, t1, t2, . . .) ∈ C

∞ ∣∣ (κ1, κ2) ∈ Uj,m =
∞∑
j=1

j |Uj |



where Uj are defined by

Uj = {(κ1, κ2) | �1 = �2 = 0, �̃(i) = 0 (1 � i � j), �̃(j+1) �= 0}.
Here the function �̃(i)(κ1, κ2) may be given by �̃(i) = D|ω=�1

2/�
1
1

with

D :=
∣∣∣∣∣
(
�1

1

)i (
�2

1

)i
�1
(i) �2

(i)

∣∣∣∣∣ �
j

(i) =
(
∂

∂κ2
− ω(κ1, κ2)

∂

∂κ1

)i
�j

where�ij = ∂�i/∂κj . Note that �̃(1) is just the Jacobian determinant. The singular structure
of the dispersionless JM hierarchy is then similar to the case of the BH hierarchy. We will
report a detailed discussion on the stratification determined by the dJMm hierarchies elsewhere.

One should also note that the integrable deformation of the algebraic curve defined by
either the BHm or dJMm hierarchy is rather a general property of the dispersionless integrable
hierarchy. For example, the dispersionless limit of the first hidden KP hierarchy discussed in
[16] leads to the standard form of the elliptic curve,

CKP : p2 + v0pq + v1p = q3 + u0q
2 + u1q + u2

and the corresponding deformation has the form

∂p

∂tn
= ∂

∂y
Qn

∂q

∂tn
= ∂

∂x
Qn

with Qn ∈ C[p, q]

CKP
n = 0, 1, 2, . . .

where Deg(Qn) = n + 2 with Deg(p) = 3,Deg(q) = 2 and t0 = x, t1 = y. This contains
the BH1 hierarchy as the reduction with q = k = constant with v0 = v1 = 0, and the
hidden dispersionless Boussinesq hierarchy with the reduction p = k = constant and u0 = 0.
The singular structures determined by the hidden dispersionless KP hierarchy and its reductions
(such as the Gel’fand–Dikii type) will be discussed elsewhere. We also remark that the
integrable deformation of hyperelliptic curve discussed in the present letter is different from
that given by the Whitham hierarchy (see for example [10]). The Whitham hierarchy describes
a slow modulation over a quasi-periodic solution of the original dispersive equation, and
is obtained as a dispersive regularization of the dispersionless hierarchy. However, our
deformation describes each stratum (singular sector) of the Birkhoff decomposition, which
is parametrized by the hyperelliptic curve, and it has no direct connection with the original
dispersive equation.

As a final remark, we would like to point out that the BHm hierarchy may not have a
single free energy (or pre-potential) which plays a central role in a topological field theory.
In the dispersionless KP hierarchy, the free energy can be obtained by integrating twice the
functionGij (referred to as the Gel’fand–Dikii potential in [4]) defined as the flux density of
the conservation laws,

∂gj

∂ti
= ∂

∂x
Gij . (4.1)

Here gj = G0j and Gij are the coefficients of the expansions of pm and Qm
i in (3.2). In the

case of the BHm, they are given by the residue formulae,

Gij = Res
k=∞

(
Qm
i k

j−m dk√
k

)
.
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Because of the conservation law (4.1), Gij can be integrated once to get the form with some
function Fj ,

Gij = ∂

∂ti
Fj .

(Note that Fj are related to the functions ai in (2.4) as Fj = am−1−j for 0 � j � m − 1.)
However, one can show that Gij is not a symmetric function with respect to the indices i, j
except the case with m = 0. Hence there is no further integration to express the Gij as
a two-point function as in the case of dispersionless KP theory (see for example [4, 14]),
such as

Gij = 〈φiφj 〉 = ∂2

∂ti∂tj
F

where φi are the primary fields or gravitational descendants and F represents the free energy of
the topological field theory. Thus the BHm hierarchy is somewhat different from most of the
known dispersionless hierarchies which have a direct connection to topological field theory
[4, 7]. It is then quite interesting to construct a topological field theory based on the BHm

hierarchies, and if there exists such a theory, then the associated Frobenius manifold may have
a stratified structure characterized by a finite ring related to Fm in (3.6).
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